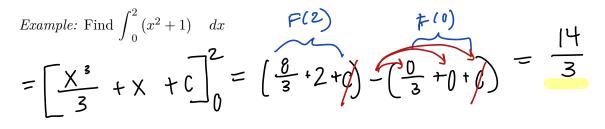
7.3) Definite Integrals

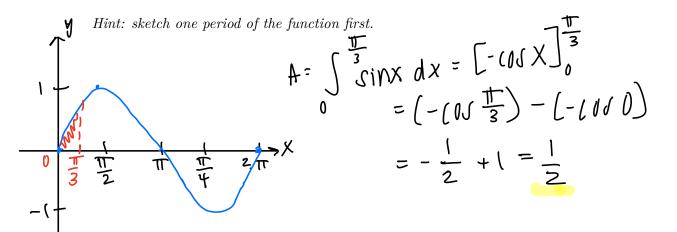
Evaluat	tion Theorem
If $f(x)$ is continuous on the interval [a,b] then:	
	$\int_{a}^{b} f(x) dx = F(b) - F(a)$
where	F(x) the antiderivative of f(x)

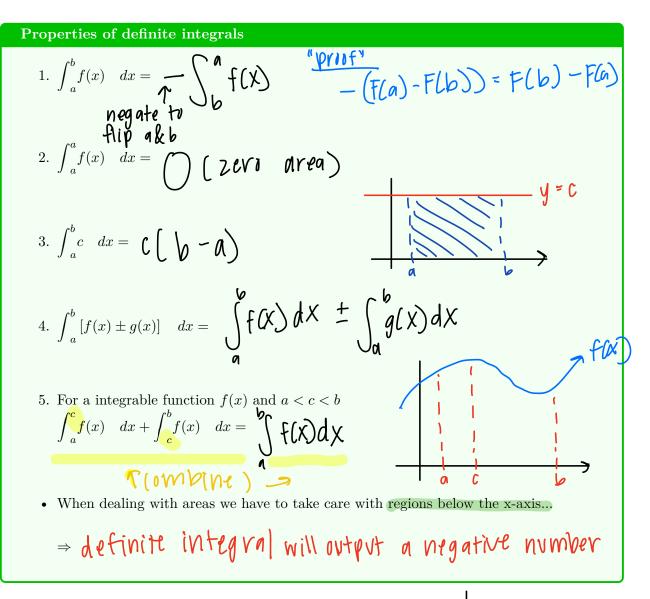
• (This theorem is actually the 2nd part of the Fundamental Theorem of Calculus (FTC)).

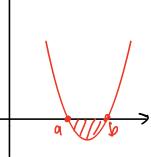


Example: Explain why the following function is integrable on the interval shown. Then compute the definite integral. VA: X = 0 but $NOT(N + Me) + Prom \int_{1}^{e} \frac{1}{x} + 4 dx = \left[[NX + 4X]_{1}^{e} + 4(1) \right]_{1}^{e} = \left[(Me - 4e) - (Mm + 4(1)) \right]_{1}^{e} = \left[+ 4e - 4 \right]_{1}^{e} + 4(1) = \left[+ 4e - 4 \right]_{1}^{e$

Example: Find the area enclosed by the x-axis, the curve $y = \sin x$ and the lines x = 0 and $x = \pi/3$.







Example: If $\int_{0}^{10} f(x) dx = 17$ and $\int_{0}^{8} f(x) dx = 12$ find the following: PLX a) $\int_{x}^{10} f(x) dx = 1 - 12 = 5$ b) $\int_{-3}^{3} f(x) dx = i$ 10 g c) $-\int_{10}^{0} f(x) dx = \iint_{0} f(x) dx = \underbrace{17}_{0}$ 12 d) $\int_{0}^{10} f(x) + 3x - 1 dx = \int_{0}^{10} f(x) dx + \int_{0}^{10} \frac{3X - 1}{3} dx$ $= 17 + \left[\frac{3\chi^2}{2} - \chi\right]_{0}^{10}$ = 17 + (150 - 10) - (0)= 57

Example: Use the properties of integrals to evaluate $\int_0^1 (4+3x^2) dx$

Example: (SL Math DP Exam 2009)

Let $f(x) = \sqrt{x}$. Line L is the normal to the graph of f at the point (4, 2).

In the diagram below, the shaded region R is bounded by the x-axis, the graph of f and the line L .

