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8.4) Volumes of Revolution: DISCS

o Similar to how we used YF(\'amql‘N , and hence an \V\+(4V4\

to approximate an area, we can use & snmlar practlce to compute VOLUMES.

¢ Decreasing the widths QA of the ! ) k'; ‘ S will lead to a more O\C( Y Vq\ {

approximation.

- ‘
o If we shrink Ax O the W ] AW\ become so thin our sum becomes
an _\ V\\fﬁl el

Ezample: Find the volume of the solid formed when the graph of y = v/2z over [0,4] is rotated
about the x-axis through an angle of 27.
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Each cross-section here is a O\VI\(C/(I[/ l(Vldf v
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The radius of the disc changes depending on X W\{)\W\ -

but we know \( - \5 - \l-_’Z)<
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Vol = 20K wWidth = ZTXAX

For the full solid we just sum all the discs between x = 0 and = = 4.
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Summary:

o Ifaregion bounded by a closed interval [a,b] on the x-axis, the volume of the So\l d
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e vevolutiogwn is ot 0‘%}(0\\/“\

Volume of revolution (rotation)
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Ezample: Find the volume of the solid generated when the region enclosed by y = v/sin2z, z = 0
and x = 7/2 is rotated about the z-axis 360°.
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